
CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Assignment IV:
Smashtag Mentions
Objective

In this assignment, you will enhance the Smashtag application that we built in class to
give ready-access to hashtags, urls, images and users mentioned in a tweet.
Submit your solution via the normal process before the start of lecture on Monday.
Be sure to review the Hints section below!
Also, check out the latest in the Evaluation section to make sure you understand what
you are going to be evaluated on with this assignment.

Materials
• This is a completely new application, so you will not need anything (but the knowledge

you gained) from your first three homework assignments.
• You will need a Twitter account.
• The Twitter utility classes are required (or at least, will be extremely useful!) for this

assignment.

PAGE OF ASSIGNMENT IV: SMASHTAG1 10

http://cs193p.stanford.edu/Twitter.zip

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Required Tasks
1. Enhance Smashtag from lecture to highlight (in a different color for each) hashtags,

urls and user screen names mentioned in the text of each Tweet (these are known as
“mentions”). Note that mentions are already located for you in each Tweet by Twitter
and show up as [Mention]s in the CS193pTwitter.Tweet class in the Twitter
framework that comes along with the demo from class.

2. When the user touches a Tweet, segue to a new UITableViewController which has
four sections listing the “mentions” in the Tweet: images, hashtags, users and urls.
The first section displays (one per row) any images attached to the Tweet (found in the
media variable in the CS193pTwitter.Tweet class). The last three sections list the items
described in Required Task 1 (again, one per row).

3. Images in the table above should be shown in their normal aspect ratio and should use
the entire width of the table view (a standard surrounding border is acceptable).

4. Each section in the mentions table view should have an appropriate header, but if a
section has no items in it, there should be no header visible for that section.

5. If a user touches an entry for a hashtag or a user in the mentions table view, segue to
show the results of searching Twitter for that hashtag or user. It should be searching
for hashtags or users, not just searching for a string that is the name of the hashtag or
user (e.g. search for “#stanford”, not “stanford”). The view controller to which you
segue must work identically to the main Tweet-viewing view controller
(TweetTableViewController).

6. If the user touches on a mentioned url in your newly created view controller, you
should open up that url in Safari (see Hints below for how to do that).

7. If the user touches on an image in your newly created view controller, segue to yet
another new MVC which lets the user scroll around and zoom in on the image. When
the image first appears in this new MVC, it should display zoomed (in its normal
aspect ratio) to show as much of the image as possible but with no
“whitespace” around it. The user can then scroll around and zoom from there.

8. Keep track of the most recent 100 Twitter searches the user has invoked (by any
means) in your application. Add a UITabBarController to your application with a tab
for searching (i.e. the functionality above) and a second tab showing these most recent
search terms in a table view (case-insensitively uniqued with most recent first).
When a user touches on a search term in this tab, segue (stay in that same tab) to show
the most recent Tweets matching that search term. Store these most recent search
terms permanently so that your application doesn’t forget them if it is restarted.

9. You must not block the main thread of your application at any time.

10. Your application must work properly in portrait and landscape on any iPhone (this is
an iPhone-only application).  

PAGE OF ASSIGNMENT IV: SMASHTAG2 10

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Hints
1. You will need to log in to Twitter in Settings on your device (or on the simulator) to

make the provided CS193pTwitter framework work.

2. Remember that you must create a workspace in Xcode that contains both your
Smashtag project and the provided Twitter framework project. The two projects must
be siblings (not have an ancestral relationship to each other) in the workspace.

3. You will also need to drag the Twitter framework (from the navigation pane of your
workspace) into the General tab of your Smashtag Project Settings under Embedded
Binaries.

4. The Twitter classes provided are CustomStringConvertible, so you can print them
out with print. This might be helpful for debugging purposes.

5. Don’t be overwhelmed by all the code in the Twitter framework. The only method
you’ll ever need to call in the entire framework is fetchTweets. Otherwise you just
need to access whatever public properties you need in the Tweet, MediaItem and User
data structures. You can completely ignore non-public parts of the Twitter
framework.

6. Warning: Twitter does not always report every single mention (especially url mentions
at the end of a tweet). As long as 90+% of the mentions are showing up in your UI,
you are probably doing it right.

7. Most UIKit classes (like UILabel and UIButton) have a method attributedText which
lets you set and get its text using an NSAttributedString.

8. Make sure you do not “break” the feature that currently exists in Smashtag whereby it
shows Tweets using the preferred body font style (and thus the text in the Tweets can
be made larger or smaller by the user in Settings).

9. To add a UITableViewController to your storyboard, just drag one out of the Object
Palette and change its class to be a custom subclass of UITableViewController you
create using File → New → File....

10. Your new “mentions” (and images) MVC has different “kinds” of things in each
section. While you might be tempted to deal with this with large if-then or switch
statements in your UITableViewDataSource and navigation methods, a cleaner
approach would be to create an internal data structure for your
UITableViewController which encapsulates the data (both the similarities and
differences) in the sections. For example, it’d be nice if
numberOfSectionsInTableView, numberOfRowsInSection , and
titleForHeaderInSection were all “one-liners”.

11. In fact, in general, any method that has more than a dozen lines of code is probably
going to be hard for readers of your code to understand (and might well betray a “less
than optimal” architectural approach).

PAGE OF ASSIGNMENT IV: SMASHTAG3 10

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

12. Don’t forget about Swift features like enum. Use Swift to its fullest. Harken back to the
data structure we created for the CalculatorBrain. It might provide some inspiration
for this assignment too.

13. As always, give solid thought as to what the “public (i.e. non-private) API” of your
new controller is. Make everything else private. Your public API is what says to the
rest of your application “this is how you use this controller.” No other part of your
application should know anything about the internal workings of your controller. And
your controller should always “do the right thing (i.e. do what it was created to do)”
when some other part of your application uses the controller by calling its public API.

14. Ditto for any UITableViewCell subclass you create. Or any class you create for that
matter!

15. Be sure to think about the titles of your MVCs (i.e. what appears in the navigation bar
of a navigation controller when each MVC is being shown).

16. If you are going to be indexing into an NSAttributedString, you will want to use the
nsrange property of Tweet.Mention (since NSAttributedString indexes into an
underlying NSString, not an underlying String).

17. If you have an NSURL named url, you can open it in Safari like this:
UIApplication.sharedApplication().openURL(url).

18. You will almost certainly need two different UITableViewCell prototypes in your
storyboard. Give them different identifiers and dequeue an appropriate one in
cellForRowAtIndexPath.

19. Your new view controller’s row heights don’t need to be “estimated” like the row
heights of the “list of Tweets” controller because you have very few rows and
performance is not a consideration. Thus you will likely want to implement the
UITableViewDelegate method heightForRowAtIndexPath.

20. For your rows that contain an image, you’ll have to figure out an appropriate height
depending on its aspect ratio. For the other rows in your table, you can just let them
automatically figure their own height by returning UITableViewAutomaticDimension
from heightForRowAtIndexPath.

21. You can figure out the aspect ratio of an image in a Tweet without having to actually
fetch the actual image from its url. See the MediaItem class in the Twitter framework
provided.

22. For the required task where the user can click on an image to start panning and
zooming on it in a new MVC, you can mostly reuse code from Cassini. However,
you’ll have to add the autozooming-to-fit capability to the ImageViewController.

23. It would be cool to make that autozooming-to-fit behavior continue to happen
whenever the MVC’s view’s geometry changes until the user explicitly zooms with a

PAGE OF ASSIGNMENT IV: SMASHTAG4 10

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

gesture (there is a delegate method to find out when that occurs). That way it’ll
autozoom-to-fit as the user rotates their device.

24. A cool feature of your application is (should be!) that if the user wants to zoom in on a
Tweet’s image a bit without clicking on it to segue to the detailed image viewing
MVC, the user can simply rotate the device to landscape. If you implement things
properly, you’ll get this feature “for free” (i.e. no code required).

25. It’s probably a good idea to have a single, global “truth” for the most recent search
terms and, since you have to store them in NSUserDefaults anyway, why not make
NSUserDefaults be that truth? You might want to wrap a little class or struct
around your storing and recalling from NSUserDefaults that you can use throughout
your application.

26. NSData(contentsOfURL:) blocks the thread it is called from when invoked with a
network url. Thus you cannot call it from the main thread.

27. You cannot make any calls into UIKit from any thread other than the main thread.
Be careful not to “accidentally” do this by calling some method which subsequently
calls a method in UIKit. If you call a method from UIKit (directly or indirectly) off
the main thread, your UI will fail in unpredictable ways.

28. The fetchTweets method executes its handler off the main thread (so UIKit methods
cannot be called from that results handler).

29. Remember that the cells of a UITableView are only created for visible cells and they
are reused as data comes on screen and goes off screen.

30. If you are fetching in a thread other than the main thread and then get the result and
then want to ask the main queue to do something with that result, you’d better be sure
nothing has “changed” while the network call was going on (especially note this with
respect to the Hint immediately above this one).  

PAGE OF ASSIGNMENT IV: SMASHTAG5 10

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Things to Learn
Here is a partial list of concepts this assignment is intended to let you gain practice with
or otherwise demonstrate your knowledge of.

1. NSAttributedString
2. UITableView
3. UITableViewController
4. UITableViewCell
5. UIRefreshControl
6. UIActivityIndicatorView
7. UITabBarController
8. Multithreading
9. Data structure design
10. NSUserDefaults
11. UIScrollView
12. UIImageView

Screen Shots
We are always hesitant to include screen shots
because we don’t want to restrict your creativity.
These screen shots are NOT Required Tasks.
They are just intended to give you an idea if you
are having trouble visualizing the Required Tasks.
The colors below were chosen completely at
random. You should choose colors you think look
good in your UI.  

PAGE OF ASSIGNMENT IV: SMASHTAG6 10

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Evaluation
In all of the assignments this quarter, writing quality code that builds without warnings
or errors, and then testing the resulting application and iterating until it functions
properly is the goal.
Here are the most common reasons assignments are marked down:

• Project does not build.

• Project does not build without warnings.

• One or more items in the Required Tasks section was not satisfied.

• A fundamental concept was not understood.

• Code is visually sloppy and hard to read (e.g. indentation is not consistent, etc.).

• Your solution is difficult (or impossible) for someone reading the code to
understand due to lack of comments, poor variable/method names, poor solution
structure, long methods, etc.

• UI is a mess. Things should be lined up and appropriately spaced to “look nice.”

• Incorrect or poor use of object-oriented design principles. For example, code
should not be duplicated if it can be reused via inheritance or other object-
oriented design methodologies.

• Public and private API is not properly delineated.
Often students ask “how much commenting of my code do I need to do?” The answer
is that your code must be easily and completely understandable by anyone reading it.
You can assume that the reader knows the SDK, but should not assume that they
already know the (or a) solution to the problem.

PAGE OF ASSIGNMENT IV: SMASHTAG7 10

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Extra Credit
There are lots of ideas below. We certainly don’t expect that you’ll do all of them (and
some are more difficult than others). Read through them and pick whichever ones
intrigue you the most.

1. In the Users section of your new UITableViewController, list not only users mentioned
in the Tweet, but also the user who posted the Tweet in the first place.

2. When you click on a user in the Users section, search not only for Tweets that
mention that user, but also for Tweets which were posted by that user.

3. The UI of this application can get very, very deep into a UINavigationController
stack (as you chase mentions down). Add some UI which will allow the user to pop all
the way back to the rootViewController of the UINavigationController at any time.

4. Instead of opening urls in Safari, display them in your application by segueing to a
controller with a UIWebView. You’ll have to provide at least a little bit of “browser
control” UI to go along with it (e.g. a “back button”). Remember that
UINavigationController can display buttons at the bottom as well via the
toolbarItems method in an embedded MVC.

5. Make the “most recent searches” table be editable (i.e. let the user swipe left to delete
the ones they don’t like).

6. Add some UI which displays a new view controller showing a UICollectionView of
all the images in all the Tweets that match the search. When a user clicks on an
image in this UICollectionView, segue to showing them the Tweet (even though you’d
only be showing one Tweet, you could still use your TweetTableViewController and
then you’d have all the “pursue mentions” functionality available from there).  

PAGE OF ASSIGNMENT IV: SMASHTAG8 10

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Extra Credit Hints
1. If you have built a good internal data structure for your section data, hopefully this is

just a matter of enhancing an init() method for that internal data structure or
something.

2. You will want to familiarize yourself with the “operators” in Twitter search queries.

3. The “pop back” UI should obviously not appear when you are at the root view
controller.

4. Check out the documentation for UIWebView.

5. When you create a UITableViewController subclass, the template will actually
include some methods to help with this.

6. Here are some things to consider …

6.a. The template you get when you create a subclass of
UICollectionViewController has a call to registerClass in viewDidLoad.
DELETE THIS LINE OF CODE. You will be setting the class of your
UICollectionViewCells in the storyboard instead. If you do not delete this call
to registerClass, it will override anything you do in the storyboard since
viewDidLoad gets called after the storyboard is done loading.

6.b. Because you will obviously be downloading all those images off the main
thread, scrolling around should be snappy, but, frankly, if you re-download
them over and over as the user scrolls around, you’ll get a lot of blank spaces
that fill in over time and won’t really look that great. So cache the images.
Check out the class NSCache. It is like an NSDictionary (objectForKey and
setObject:forKey), but adds the concept of a “cost” of something being in the
cache via setObject:forKey:cost:. The “cost” of an image could be its size in
kb, for example. The NSCache will throw things out of the cache any time it
wants, so you will always just lookup the NSURL you want (to find the associated
UIImage), use it if you find it, or just download it again if you don’t. You’ll
want your cache associated with your UICollectionViewController subclass
(so that it will be shared by all the cells and so that it will go away when the
controller goes away). You’ll have to figure out the right way to make the cache
available to the cells.

6.c. The big difference between a UITableView and a UICollectionView is that a
table view is always laid out in exactly the same way (i.e. rows in a single
column). A collection view has a UICollectionViewLayout property which
determines how its cells are layout (and is thus massively flexible).
UICollectionViews by default use a UICollectionViewFlowLayout to lay out its
cells kind of like the characters in “justified text” are laid out. That should suit
your purposes here just fine! Things like the size of a cell is determined by the
delegate in both table views and collection views, but in collection views, the

PAGE OF ASSIGNMENT IV: SMASHTAG9 10

https://twitter.com/search-home#

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

delegate responds to a protocol that is specific to its layout engine. For a
FlowLayout, the protocol is called UICollectionViewDelegateFlowLayout. So
if you want to control the size of cells, for example, you’d implement
collectionView:layout:sizeForItemAtIndexPath: in your
UICollectionViewController subclass.

6.d. You can take the easy way out and pick a predetermined size for the cells in the
UICollectionView or, perhaps better, pick a predetermined “area” (i.e. width x
height) for each one (but maintain each image’s aspect ratio).

6.e. It would be cool to have “pinching” on the UICollectionView make the cell’s
size get larger and smaller (i.e. showing more or fewer images). Pinching should
be trivial to implement if you take the approach above to size your cells
(pinching would just scale the “area” up and down).

PAGE OF ASSIGNMENT IV: SMASHTAG10 10

